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“Automated Warehouse System”

* Quickly development in automated
warehouse trend.

*The automated warehouse
improves the operation efficiency.

*The expected development of the e ey o novas
warehouse automation in the -
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Figure 2: Smart warehouse concept (Source 1)
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“Smart Technology”

e Automated Guided Vehicle
*|oT technology

* Al and machine learning

* Computer Vision

Automation

* Navigation technology
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Figure 3: Smart technology
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01. Introduction

“Computer Vision”

* Application N inventory
management and fulfillment.

e Safety application to detect and
avoid the object around the
vehicle.

=> Based on the requirement and
the quality of the computer vision in
automated warehouse, this topic
proposed the application of YOLOvS8
for inventory management.

Al cargo recognition and management at
Busan Port Smart Logistics Center

Figure 4: Computer vision application
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“Detection model”

*YOLO (You Only Look Once) is a popular deep learning model used for
object detection in images and videos.

*YOLO's key advantage lies in its speed and efficiency, allowing it to achieve
high accuracy while maintaining low latency.
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Figure 5: You Only Look Once (YOLO) model timeline
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02. Methodology

“Detection model”

Al cargo recognition and management at
Busan Port Smart Logistics Center

application,
proposed.

°The YOLOvS8

introduced in Figure 6

*YOLOVS
YOLOvV5, which utilizes a single
convolutional neural network (CNN)
to detect objects and can
inferences in real time
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Figure 6: YOLOVS outperformance architecture
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“Training workflow for object detection model”

* The training workflow for the object detection model involves six steps,
which will be introduced sequentially.

Model Model Post- Monitoring and
Training: Evaluation: processing: Maintenance:

Assess

Data Collection

and
Preparation:

Continuously

Gather annotated Choose YOLO Deploy model for Refine bounding :
. : performance on _— monitor
images. architecture. N predictions. boxes.
validation set. performance.
Split into train, : : Measure : Collect feedback
o Fine-tune with .. Process input Implement non-
validation, test : precision, recall, . ) for
transfer learning. images. max suppression. :
sets. MAP. Improvements.

Train on
annotated data.
Figure 7: Training steps
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“Warehouse Management System Concept”

*Below system is proposed to make the application, which is the
integration of the loT sensor, Database and the Warehouse management
system
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Figure 8: The general concept of the application in warehouse
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“Device Design”
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Figure 9. 3D design using Solidworks Figure 10. Actual device
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“Software design”

o To communicate between the system and device. WMoS
software is developed. The concept of the software is
proposed as:

WMoS System
I
! I ! ]
Dashboard Cargo Detection Enwrgnmgnt Setting
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3 ¥
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: . g 8 - Detecting the : : : - Showing and
site with AGV real time video from the .
" type of cargo and modifying the
positions . warehouse .
- Showing general counting , - Detecting the P
: . - Double checking : parameter of
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the for the cargo . the software
AGV ik human working in
- Real-time monitor video pICK-Up process the warehouse

Figure 11. WMoS Software Function Overview
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“Software design”
o Cargo detection function in software
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Figure 12: Cargo Detection Tab
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“Experiment Setup”

o The experiment is carried out in KULS warehouse
o The layout out of the warehouse is introduced in Figure...
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Figure 13. Warehouse CCTV Figure 14. 2D Design Figure 15. Simulation
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“Experiment Setup”

o Module setup

e ‘ |l Wl
Cargo-D Cargo-E
Figure 16:Camera setup on AGV Figure 17: Types of cargo using for training
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Video 1. Experiment Carried out in Warehouse
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“Main results”

* Table 1 shows the summary of the detection experiment.

Table 1: Results of cargo detection and counting

Cargo-D: 0 | Cargo-D: 0
Cargo-E: 0 | Cargo-E: 0

Cargo-A: 0 | Cargo-A: 0 2 2

Cargo-B: 0 | Cargo-B: 0 0 0

1 Cargo-C: 4 | Cargo-C: 4 :0 0
Cargo-D: 1 | Cargo-D: 1 0 0

Cargo-E: 0 | Cargo-E: 0 0 : 0

Cargo-A: 0 | Cargo-A: 0 0 0

Cargo-B: 0 | Cargo-B: 0 o) ;6

2 Cargo-C: 4 | Cargo-C: 4 0 0
0 0

0 0
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04. Results

“Main results”
Table 1: Results of cargo detection and counting

0 0 Cargo-A: 6 | Cargo-A: 6
0 0 Cargo-B: 2 Cargo-B: 2
0 0 8 Cargo-C: 0 | Cargo-C: 0
0 0 Cargo-D: 0 | Cargo-D: 0
4 4 Cargo-E: 0O Cargo-E: 0O
0 0 Cargo-A: 0 | Cargo-A: 0
0 0 Cargo-B: 10 | Cargo-B: 10
4 4 9 Cargo-C: 0 | Cargo-C: 0
0 0 Cargo-D: 0 | Cargo-D: 0
0 0 Cargo-E: 0 Cargo-E: O
3 3 Cargo-A: 0 | Cargo-A: 0
: 0 0 Cargo-B: 9 Cargo-B: 9
: 0 0 10 Cargo-C: 0 | Cargo-C: 0
0 0 Cargo-D: 0 | Cargo-D: 0
0 0 Cargo-E: 2 Cargo-E: 2
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*The integration of the YOLOv8 model into AGV system presents a
significant advancement for warehouse automation. This approach not
only enhances inventory control and order fulfillment but also boosts
overall productivity and operational effectiveness.

* The successful implementation of this system represents a critical step
towards realizing fully automated warehouse operations, thereby
optimizing productivity and operational efficiency in modern logistics
environments.
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