
The 12th Busan International Port Conference - BIPC2024 September 24-25th, 2024

Al Cargo Recognition and Management at Busan Port Smart Logistics Center

Presenter: HO VAN ROI,

Department of Logistics System Engineering

01. Introduction

"Automated Warehouse System"

- Quickly development in automated warehouse trend.
- The automated warehouse improves the operation efficiency.
- The expected development of the warehouse automation in the future.

Figure 1: Smart warehouse concept

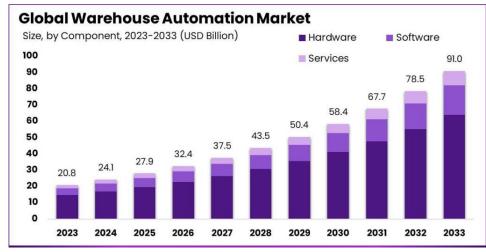
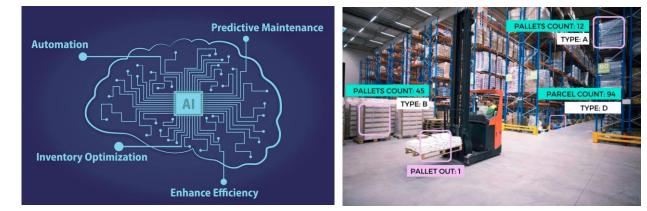


Figure 2: Smart warehouse concept (Source 1)

Al cargo recognition and management at Busan Port Smart Logistics Center

01. Introduction

"Smart Technology"


- Automated Guided Vehicle
- IoT technology
- AI and machine learning
- Computer Vision
- Navigation technology

AGV

AI technology

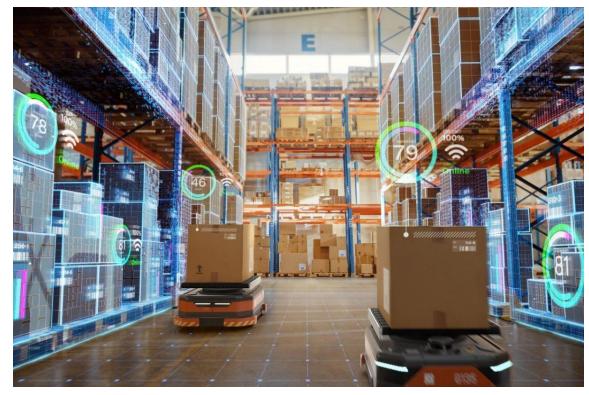

Computer Vision

Figure 3: Smart technology

01. Introduction

"Computer Vision"

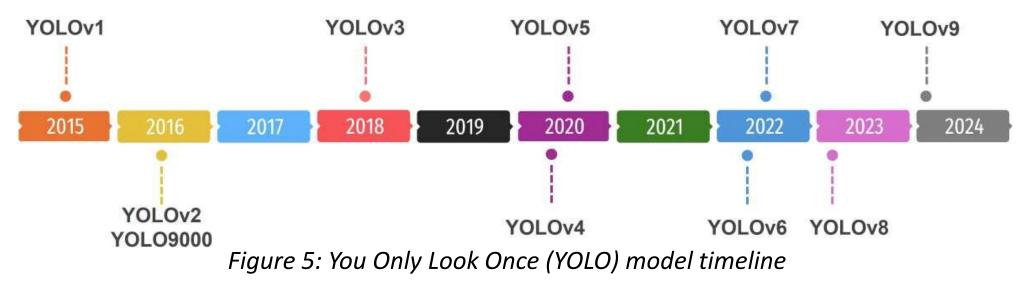
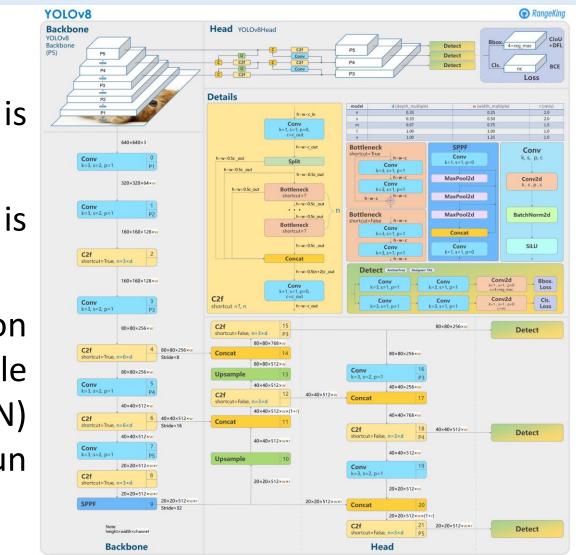

- Application in inventory management and fulfillment.
- Safety application to detect and avoid the object around the vehicle.
- => Based on the requirement and the quality of the computer vision in automated warehouse, this topic proposed the application of YOLOv8 for inventory management.

Figure 4: Computer vision application

"Detection model"


- YOLO (You Only Look Once) is a popular deep learning model used for object detection in images and videos.
- YOLO's key advantage lies in its speed and efficiency, allowing it to achieve high accuracy while maintaining low latency.

National Korea Maritime and Ocean University

"Detection model"

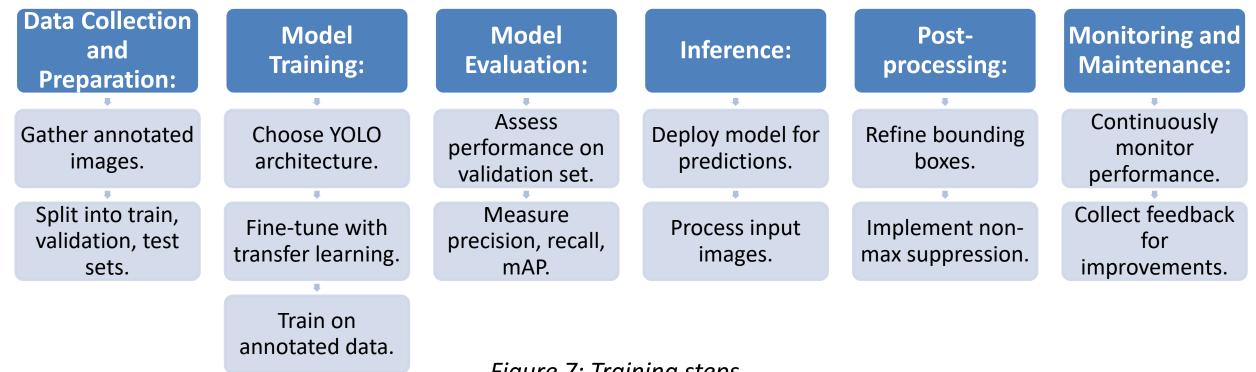

- In this application, YOLOv8 proposed.
- The YOLOv8 architecture introduced in Figure 6
- •YOLOv8 is developed based on YOLOv5, which utilizes a single convolutional neural network (CNN) to detect objects and can run inferences in real time

Figure 6: YOLOv8 outperformance architecture

"Training workflow for object detection model"

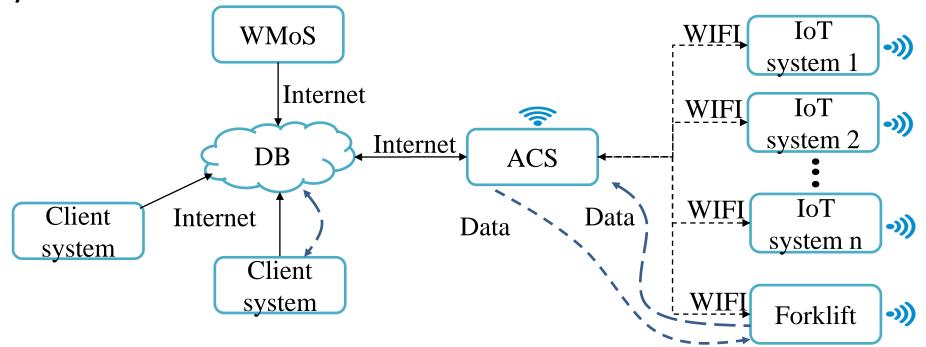

• The training workflow for the object detection model involves six steps, which will be introduced sequentially.

Figure 7: Training steps

"Warehouse Management System Concept"

• Below system is proposed to make the application, which is the integration of the IoT sensor, Database and the Warehouse management system

Figure 8: The general concept of the application in warehouse

Al cargo recognition and management at Busan Port Smart Logistics Center

"Device Design"

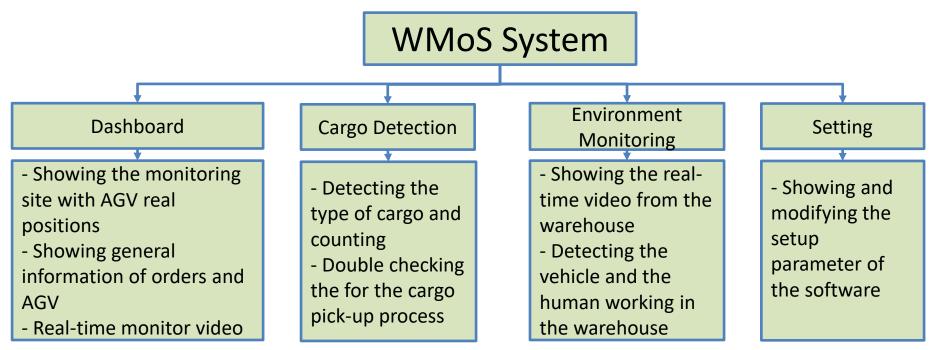

Figure 9. 3D design using Solidworks

Figure 10. Actual device

03. Experiment

"Software design"

To communicate between the system and device. WMoS software is developed. The concept of the software is proposed as:

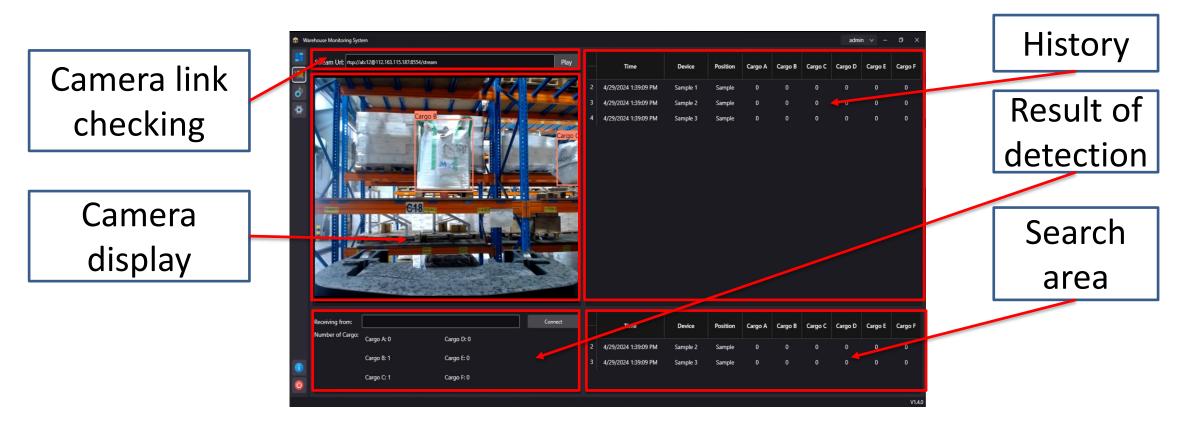


Figure 11. WMoS Software Function Overview

03. Experiment

"Software design"

Cargo detection function in software

Figure 12: Cargo Detection Tab

03. Experiment

"Experiment Setup"

The experiment is carried out in KULS warehouse The layout out of the warehouse is introduced in Figure...

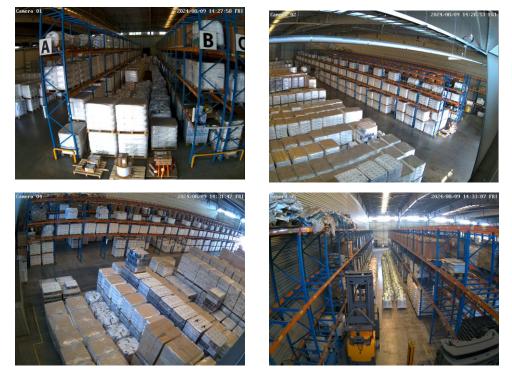


Figure 13. Warehouse CCTV

Figure 14. 2D Design

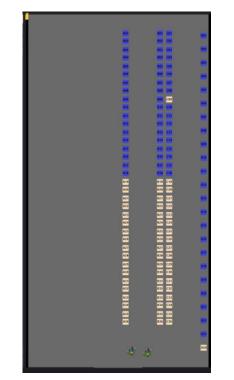


Figure 15. Simulation

Al cargo recognition and management at Busan Port Smart Logistics Center

"Experiment Setup"O Module setup

Figure 16:Camera setup on AGV

Cargo-A

Cargo-B

Cargo-C

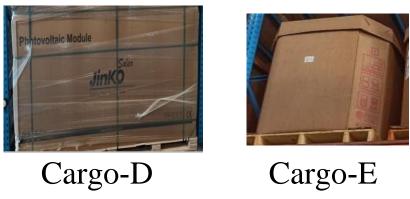
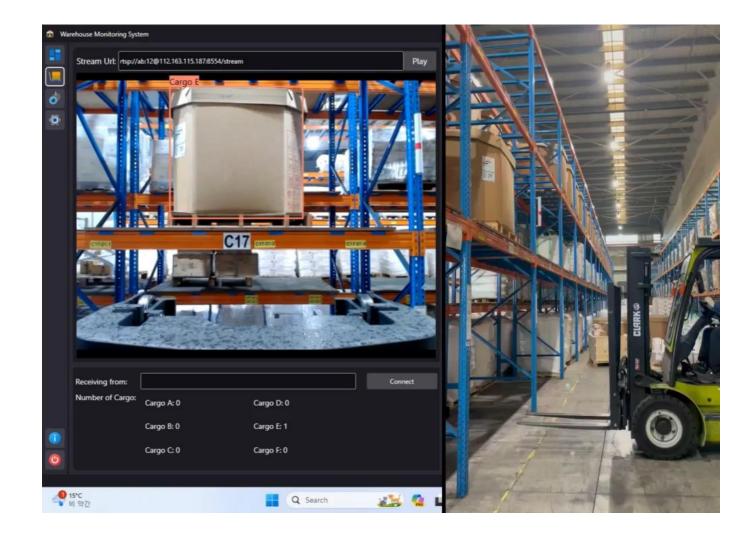



Figure 17: Types of cargo using for training

Video 1. Experiment Carried out in Warehouse

"Main results"

04. Results

• Table 1 shows the summary of the detection experiment.

Table 1: Results of cargo detection and counting

No.	Object detection	Detection quantity	Actual quantity	Pass /Fail	No.	Object detection	Detection quantity	Actual quantity	Pass /Fail
1	Corge: 0.84 Corge: 0.84 Corge	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 1 Cargo-E: 0	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 1 Cargo-E: 0	Pass	6	Composition Composition Composition Composition Composition Composition	Cargo-A: 2 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Cargo-A: 2 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Pass
2	Corpo 0.84 sp 0.93 Tage A17 are total Ph ptovoltaic Module	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 0 Cargo-E: 0	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 0 Cargo-E: 0	Pass	7	Corpet 0.51	Cargo-A: 0 Cargo-B: 6 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Cargo-A: 0 Cargo-B: 6 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Pass

"Main results"

Table 1: Results of cargo detection and counting

No.	Object detection	Detection quantity	Actual quantity	Pass /Fail	No.	Object detection	Detection quantity	Actual quantity	Pass /Fail
3	Corpet 0.04	Cargo-A: 0 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 4	Cargo-A: 0 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 4	Pass	8	Crypt 0.05 Crypt 0.05	Cargo-A: 6 Cargo-B: 2 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Cargo-A: 6 Cargo-B: 2 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Pass
4	ALLANDS ALL	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 0 Cargo-E: 0	Cargo-A: 0 Cargo-B: 0 Cargo-C: 4 Cargo-D: 0 Cargo-E: 0	Pass	9	Correll 0.04 cross 0.04 Correll 0.03 Correll 0.03 Correll 0.04 cross 0.04 cro	Cargo-A: 0 Cargo-B: 10 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Cargo-A: 0 Cargo-B: 10 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Pass
5		Cargo-A: 3 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Cargo-A: 3 Cargo-B: 0 Cargo-C: 0 Cargo-D: 0 Cargo-E: 0	Pass	10	Corrys 0.05 Corps 0.95 Fill Corrys 0.05 Corps 0.03 Corps 0.03 Corps 0.03 Fill Corps 0.05 Corps 0.03 Corps 0.04	Cargo-A: 0 Cargo-B: 9 Cargo-C: 0 Cargo-D: 0 Cargo-E: 2	Cargo-A: 0 Cargo-B: 9 Cargo-C: 0 Cargo-D: 0 Cargo-E: 2	Pass

- The integration of the YOLOv8 model into AGV system presents a significant advancement for warehouse automation. This approach not only enhances inventory control and order fulfillment but also boosts overall productivity and operational effectiveness.
- The successful implementation of this system represents a critical step towards realizing fully automated warehouse operations, thereby optimizing productivity and operational efficiency in modern logistics environments.

References

- 1) Neetha, S. S., Vijay Kumar Pandey, and Amit Kumar Sharma. "Real-Time Motion Detection for Cargo Tracking and Management in Industrial Warehouses." In 2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC), pp. 1-6. IEEE, 2024.
- Syu, Jia-Liang, Hsin-Ting Li, Jen-Shiun Chiang, Chih-Hsien Hsia, Po-Han Wu, Chi-Fang Hsieh, and Shih-An Li.
 "A computer vision assisted system for autonomous forklift vehicles in real factory environment." Multimedia Tools and Applications 76 (2017): 18387-18407.
- 3) Naumann, Alexander, Felix Hertlein, Laura Dörr, Steffen Thoma, and Kai Furmans. "Literature review: Computer vision applications in transportation logistics and warehousing." arXiv preprint arXiv:2304.06009 (2023).
- 4) Lei, Bin, Zhaoyuan Jiang, and Haibo Mu. "Integrated optimization of mixed cargo packing and cargo location assignment in automated storage and retrieval systems." Discrete Dynamics in Nature and Society 2019, no. 1 (2019): 9072847.
- 5) Global warehouse automation market <u>https://www.bookjournalism.com/@1999/2100</u>
- 6) YOLO model <u>https://docs.ultralytics.com/</u>

