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PortEdge: The AI Revolution in Smart Port Operations
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Motivations:
• Ports face increasingly complex operational 

demands, including diverse shipping 
requirements, varied cargo types, and 
fluctuating port traffic.. 

• Efficient workload coordination and resource 
scheduling are crucial for deploying smart 
port operations across a network of 
interconnected port facilities.

• In resource-constrained port environments, 
the management of operations, from cargo 
handling to ship scheduling, often exceeds 
the capacity of individual systems. 

• Leveraging AI-driven strategies to allocate 
tasks across different port nodes and 
operations, known as " model parallel " 
modes in computing, is necessary to optimize 
performance. 

Question: How can smart port operations be 
effectively managed and optimized?
➔We need to resolve the workflow first.

Overview of End-edge-cloud Networks in Port Operations:



How to Handling PortEdge Applications
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Workflow of Handling UEI Applications:
• The precondition for handling UEI applications is to 

translate the human instructions to job commands 
via in-cloud large language models (LLMs). 

• The latency mainly comes from (1) uploading the 
input samples or latent features through the 
network and (2) understanding the task definition 
by using LLMs. 

• The former measures the transmission efficiency 
that the cloud server can receive the data source 
within a reasonable deadline, and the latter 
reflects the analysis speed to quickly understand 
task objectives. 

• Together with these two terms, we can get the 
global latency to respond to human instructions 
and resolve them into a series of job commands. 

Summary:
• We treat these two terms as constraints to 

formulate the major optimization problem and 
define the system model.

Overview: we need to coordinate the workload among cloud, 
edge server and port end devices.



System Model
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Key Points of System Model:
• We need to divide the model following the 

order of layers and allocate the neurons to 
different devices. 

• A neuron corresponds to a specific function in 
the computation graph marked in different 
colors. 

• Assigning a neuron to different devices will 
yield different performance of job completion 
time and energy cost. 

Key Operations:
• Model Partition
• Function Assignment

Objectives:
• minimizing job completion time
• Reducing runtime energy cost

Our Solution:
• Green Workload Coordination ➔ PortEdge

Visualization of Model Partition and Function Assignment:



Definition of Job Completion Time
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2. After the computation stage is done, we need to transmit the output data from device i to the devices belonging 
to the next layer. The communication time can be described as:：

3. Combining the two stages of computation and communication, the per-iteration time on device i is described as: 

4. the layer completion time is bounded by the slowest device handling the corresponding function, which can be 
described as

5. By marking the layer completion time tl with current iteration index k, the total job completion time to conduct 
the training workflow is expressed as:

1. As finishing the function of the subtask allocated to device i requires going through the entire local data Di, we 
have the function completion time as:



Definition of Runtime Energy Cost:
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1. Based on the classical energy cost model[1] of portable devices, the computational energy cost to finish the 
processing of Di can be described as:

2. the energy cost due to the heat dissipation of workload computing and network communication on device i can 
be calculated as:

3. Combining these two perspectives of energy cost, we can describe the energy cost on device i in current iteration 
k as:

4. the total energy cost to finish the job is calculated as:

[1] T. D. Burd and R. W. Brodersen, “Processor design for portable systems,” VLSI Signal Processing, vol. 13, no. 2-3, pp. 203–221, 1996.



Problem Formulation and Optimization Target
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Analysis:
1. With the description of job completion time and energy cost, we can transfer our 
target into the optimization problem to minimize these two factors：

2. We use the non-negative hyper-parameter α (0 ≤ α ≤ 1) to adjust the priority weights 
between energy cost and job completion time.

3. Difficulties in solving through traditional optimization methods:
• There are numerous dynamic attributes, such as the current CPU remaining 

computing power percentage u, CPU clock frequency f, and available network 
bandwidth B.

• The model loss function Lk(ω) presents nonlinear-constrained conditions.
• The system can only obtain the current resources and task states, lacking complete 

prior knowledge of the entire training process.
• The partitioning of datasets and models directly impacts the execution time and 

energy consumption of tasks, resulting in a huge solution space when relying on 
optimization methods to solve it.

Our PortEdge Methodology:
➔We establish an intelligent agent to solve the above problem.

Formulation:



PortEdge Methodology: RLHF Agent
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Gist: We follow the Reinforcement Learning with Human Feedback (RLHF) paradigm and employ the 
Dynamic Discrete Choice (DDC) network to design our green workload coordination algorithm.

Key:
• Our RLHF agent is implemented and executed on the parameter server located on the cloud side. 
• By employing an iterative process involving action, state, and reward, the RLHF agent will keep acquiring 

self-motivated knowledge and finally be able to optimize the strategies of green workload coordination in 
a long-term view.

The iterative learning procedure of RLHF agent:

DDC Network

Human Feedback



PortEdge Methodology: Learning Procedure
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State Space: (1) training progress reflected by iteration index k, (2) current available network bandwidth, denoted 
as Bi, (3) current CPU status, denoted by frequency fi, (4) current available CPU computation capacity, and (5) loss 
value Lk(ω) under current model parameter ω.

Action Space: The action space A reflects the strategy of model partition and function (neuron) assignment to 
different devices.

Reward: The RLHF agent takes the reward as feedback to polish its DDC network, where the reward is directly 
related to to the effectiveness of the agent’s action. Given an iteration with index k, the RLHF agent will analyze 
the status of job completion time and runtime energy cost in the entire edge-cloud network. 

Step and State Transition: As RLHF learning procedure contains a series of steps, we mark each iteration of the 
distributed training job as a step. At the end of current iteration, we can re-conduct the workload placement among 
the devices based on agent’s action and continue the training procedure for the next iteration. After that, the 
workflow of DRL learning goes into the next step. 

➔ The RLHF agent learning step follows the same index of the training job iteration k.

DDC Network: Consider a dataset denoted as D and each sample inside falls in the space of {sh, ah}. Note that D
is comprised of n trajectories, which have been gathered through the observation of human decisions by the DDC 
model. The objective is to acquire knowledge about the optimal policy π of the underlying Markov Decision 
Process (MDP) process. Therefore, the policy generated by the RLHF agent can be formulated as:



Performance Evaluation
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Performance Highlights:
• The training procedure of PortEdge achieves a stable convergence and yields a high top one test accuracy.
• PortEdge can achieve better performance with a higher CPU cycle frequency and remaining computation capacity, 

while the available bandwidth yielding slight impact.

Summary:
• This phenomenon verifies the significance of optimizing the model partition and function assignment among the 

cluster, so as to accelerate the convergence speed and reduce workload overhead. 

Quantitative Analysis of Convergence Efficiency:

• Match edge environment: image classification on the MobileNet model using the Fashion MNIST and CIFAR-100 datasets.



Performance Evaluation
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Performance Highlights:
• PortEdge significantly reduces per-iteration time and presents a nearly linear increase to the neural network scale.

• PortEdge incoporates RLHF to enhance the framework efficiency, achieves a significant reduction in the accumulative 
latency caused by straggler devices.

• PortEdge requires much fewer epochs for model convergence, resulting in a notable reduction of computational overhead.

Summary:
• PortEdge improves the average job processing speed by up to 1.63× , 2.28× , 3.79× and 5.13× over the previous PPO-

based-resource-allocation (PRA), Static-with-prior-knowledge (SWPK) , Heuristic-rule (HR) , and Random-partition (RP) 
solutions, respectively.
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Quantitative Analysis of Average Job Processing Speed:



Performance Evaluation
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Performance Highlights:
• PortEdge holds a much slower growth in the curve and consumes less energy across various workload configurations.

• PortEdge successfully alleviates energy wasting by precisely placing the workload to suitable edge devices.

• PortEdge holds superior energy-saving efficiency by determining appropriate workload coordination strategies.

Summary:
• PortEdge can provide an overall energy saving improvement by up to 44.69%, 68.16%, 72.37% and 75.81% over the previous 

PPO-based-resource-allocation (PRA), Static-with-prior-knowledge (SWPK) , Heuristic-rule (HR) , and Random-partition (RP) 
solutions, respectively.

Quantitative Analysis of Runtime Energy Cost:
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Thank you!

Contact Email: 
adolfng@uic.edu.cn


