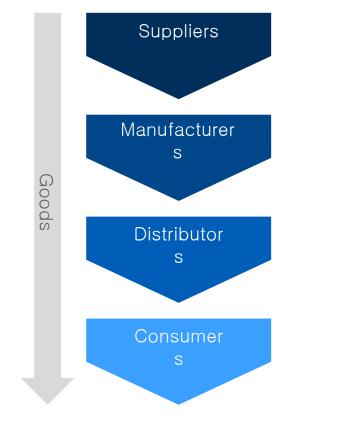


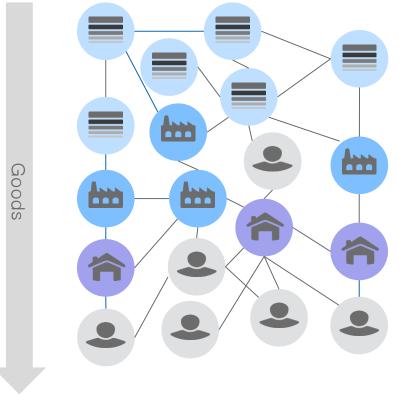
Emerging Technology Themes

September 2018

Confidential. Not to be copied, distributed, or reproduced without prior approval.

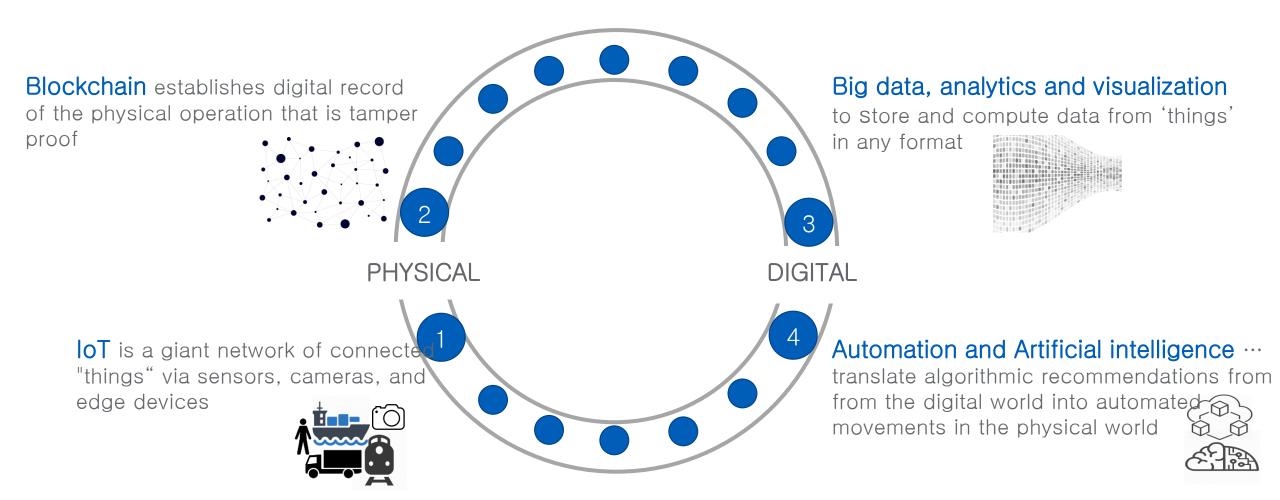


- 1. <u>Blockchain</u> definition, practical examples, and some hypotheses
- Al, Big Data, and IOT definitions, 'Yard of the Future,' and Key Challenges & Enablers
- 3. Closing Thoughts


Supply chain evolving into value webs

Linear supply chains are evolving into...

Value is based on the production of goods and services


Complex, dynamic, and connected value webs

Value is based on knowledge exchange that drives proactive production of goods and services

Connecting the Physical and the Digital

Buzzwords defined

Internet of Things

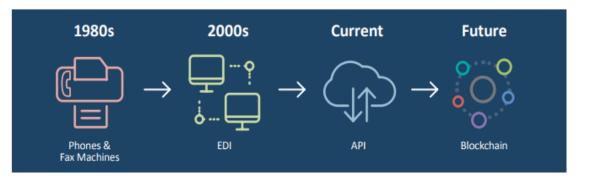
- IoT is a giant network of connected "things"
- The technology connects people ⇔ people, people⇔things, and things⇔things.
- Examples: Cameras, sensors, locomotives, containers, & the internet

Big Data & Machine Learning

- <u>Big Data</u>: collect & connect data from 'things' in any format
- <u>ML</u>: give machines access to data, train them, & then they teach themselves
- <u>Examples</u>: Sensor enabled assets, cameras monitoring yard, social media chatter

Artificial Intelligence \rightarrow Automation & Efficiency

- <u>Al</u>: Machines carry out tasks in a manner that is 'smart'
- Smart behavior leads to efficient interaction between machines and people
- Example: efficient and just-in-time handoff of freight driving yard efficiencies



Blockchain

Blockchain Defined

A new B2B standard…

With traditional forms of point-to-point B2B, each party has its own view leading to exceptions and disputes

If *shared state visibility* truly existed, many of these exceptions and dispute situations would not arise in the first place – or would be remediated as they occur

1

Blockchains use complex mathematical functions to create a secure and definitive record of who owns what, when... without a central authority.

Data is **not stored in any one place**, but across millions of computers. 3 Information held on a blockchain exists as a shared — and continually reconciled — database.

This means that the information is truly public, easily traceable & verifiable, and difficult to hack.

Real Blockchain Examples

Financial services

- Inefficient financial system adding costs through fees and delays
- Antiquated paper based process dressed up in digital wrapper
- Entities that don't know each other can make transactions directly
- <u>Ex</u>: ripple (XRP) for int'l remittance
- \$20B savings/ year … ↓ friction and costs between financial intermediaries

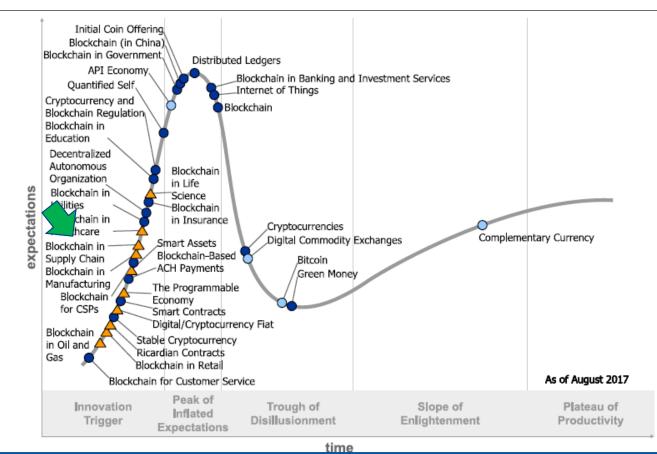
Global trade management

- Bureaucratic paperwork intensive process w/ many intermediaries
- 2x cost for processing, verifying & documenting vs. transport costs

- Digitize & automate paperwork
 filings for the import and export of
 goods
- <u>Ex</u>: Maersk / IBM BOL's and LOC's
- Allows end users to securely submit, stamp and approve docs across national / organizational boundaries

Consumer Transparency

- Source of goods becoming more important to consumers …
- ... very challenging to verify
- <u>Ex</u>: Conflict-free diamonds; Organic / cage-free foods


- Global, digital ledger that tracks
 assets across their lifecycle
- Collects ownership, history, and defining characteristics
- 'Digital thumbprint' for authenticity

Challenge

Solution

Supply Chain & Blockchain ... what is the current status?

Gartner's Blockchain "Hype Cycle"

- Phase 1 (through 2021): Irrational exuberance & few high-profile successes
- Phase 2 (2022 through 2026): Larger focused investments & many successful models

 Phase 3 (2027 through 2030): Largescale global economic value-add

Business partner onboarding challenges will halt 90% of supply chain blockchain initiatives through 2020 - Gartner

Blockchain in Supply Chain ... potential & exciting uses

1. <u>Freight Tracking:</u> offers greater visibility into supply chain transactions through shared visibility, interoperability and immutability

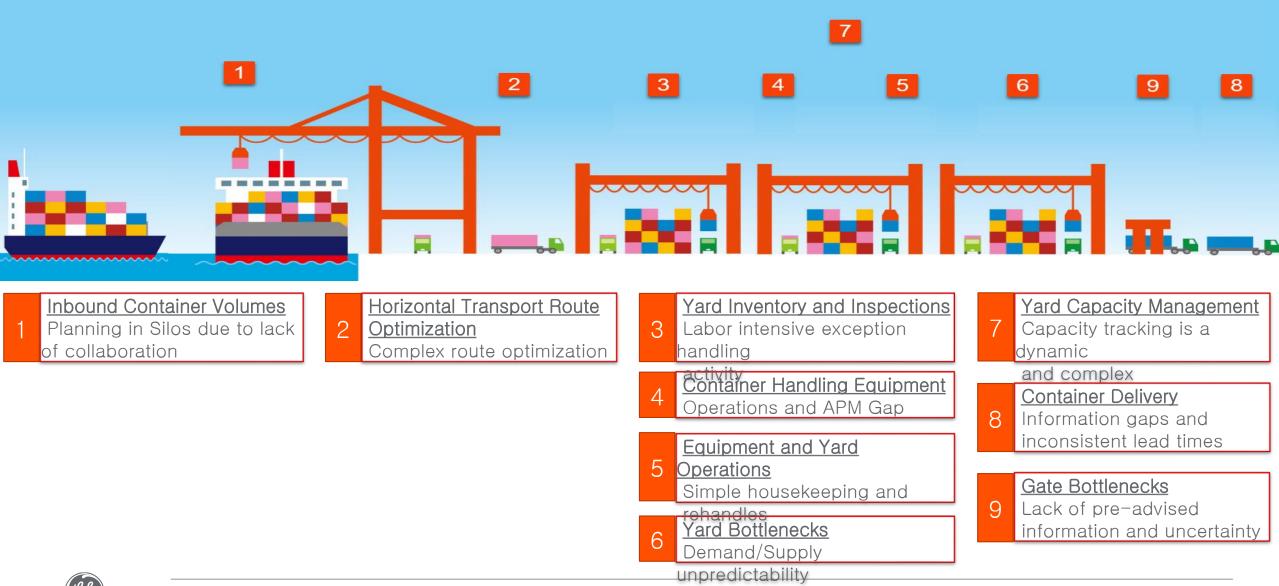
2. <u>Bill of Lading</u>: paperless BoL using blockchain eliminates potential tampering and instances where cargo lands ahead of the documentation

3. <u>Freight Settlement</u>: enables companies to transact, resolve disputes and settle more efficiently than current practice

4. <u>No-show containers</u>: use crypto deposit to curtail the \$23B booking shortfall... driven by customers that book a shipping slot but do not turn up with the cargo.

Blockchain in early stages of technology and business use case maturity … many challenges to adoption at scale

Blockchain in Supply Chain ... our views


- 1. Blockchain isn't as powerful or beneficial without mass adoption and interoperability
- 2. There are many challenges to mass adoption ...
 - Standardization is needed ... architecture, controls, platform providers.
 - Multiple Supply Chain stakeholders, including governments.
 - Lacking a single "inciting force" ... what is <u>THE</u> problem to solve.
- 3. We predict that blockchain in supply chain will continue with financial / visibility oriented use-cases through 2021. Blockchain associated with the physical movement of goods will take much longer. Mass adoption is likely a ways out (years).
- 4. Our Blockchain strategy is:
 - Influence standardization through consortium participation (BiTA)
 - Pilot financial & visibility related use-cases, as they align to our product offerings
 - Remain **flexible on blockchain partners** … until standards are set and until a true "BaaS provider" emerges, with proven **scaled capabilities.**

AI, Big data and IOT

Today's Port Ecosystem

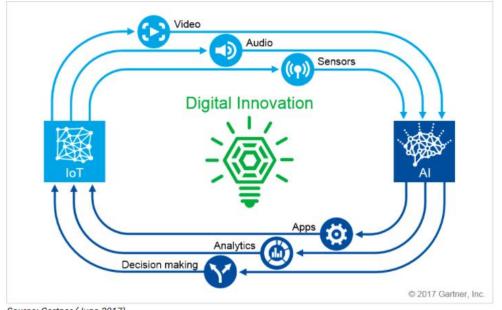
(ge)

Siloes, On premise technology, Predictability


The Future's Port Ecosystem

		7					
1	2	3	4	5	5 9	8	
						تە 4	
<u>Big Data</u>	<u>Machine Learning</u>	<u>Artifi</u>	<u>icial Intellige</u>	ence	<u>Internet of T</u>	Things	
1 Shared visibility and planning across ports	2 Horizontal Route Optimization Pattern recognition, adaptive algorithms	Yard Ir	nventory & Inspe	ections 7	7 Capacity Management IOT devices to track cargo		
			iner Handling Eq es with adaptive al		Container Delive Connectivity acros & stakeholders		
			Human like thinking/automation				
					9 Smart cities connectivity		
			<u>Bottlenecks</u> ne simulations, eva	luations	across multiple ec	-	

Interconnected Cloud Systems, Reliable, Autonomous, Data Driven


The Future's Port Ecosystem

Closing thoughts

Source: Gartner (June 2017)

- The Supply Chain's global <u>and</u> stakeholder breadth presents a great opportunity for **digital outcomes** ···
- ... the associated **disaggregation** also presents challenges to **adoption**. Governments / central authorities will need to play a critical role.
- Standardization & collaboration are both key enablers <u>and</u> potential blockers to supply chain digitization.
- Sharing data \neq sharing competitive advantage.
- Cloud is an integral part of big data and automation ... trust in technology.
- Technology without a clear problem to solve is just an interesting science experiment.

